
The Basis System, part 7

The Basis Development Team

November 13, 2007

Lawrence Livermore National Laboratory
Email: basis-devel@lists.llnl.gov

COPYRIGHT NOTICE
All files in the Basis system are Copyright 1994-2001, by the Regents of the University of California. All rights reserved. This work was produced
at the University of California, Lawrence Livermore National Laboratory (UC LLNL) under contract no. W-7405-ENG-48 (Contract 48) between
the U.S. Department of Energy (DOE) and The Regents of the University of California (University) for the operation of UC LLNL. Copyright is
reserved to the University for purposes of controlled dissemination, commercialization through formal licensing, or other disposition under terms of
Contract 48; DOE policies, regulations and orders; and U.S. statutes. The rights of the Federal Government are reserved under Contract 48 subject
to the restrictions agreed upon by the DOE and University as allowed under DOE Acquisition Letter 88-1.

DISCLAIMER
This software was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government
nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The views and opinions of the authors expressed
herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

DOE Order 1360.4A Notice
This computer software has been developed under the sponsorship of the Department of Energy. Any further distribution by any holder of this
software package or other data therein outside of DOE offices or other DOE contractors, unless otherwise specifically provided for, is prohibited
without the approval of the Energy, Science and Technology Software Center. Requests from outside the Department for DOE-developed computer
software shall be directed to the Director, ESTSC, P.O. Box 1020, Oak Ridge, TN, 37831-1020.

UCRL-MA-118543

CONTENTS

1 The Basis System 1
1.1 Environment Variables. 1
1.2 Basis Is Both a Program and a Development System. 1
1.3 About This Manual. 2

2 MPPL Reference Manual 5
2.1 A More Productive Programming Language. 5
2.2 Execution. 6
2.3 Token Processing. .10
2.4 Macro Processing. .11
2.5 Statement Processing. .22
2.6 Looping Constructs .25
2.7 Sample Input File Showing Major MPPL Features. 32
2.8 Examples of Advanced MPPL Macro Usage. 36
2.9 Migration to Fortran 90 syntax. .38

Index 43

i

ii

CHAPTER

ONE

The Basis System

1.1 Environment Variables

Before using Basis, you should set some environment variables as follows.

• BASIS ROOT should contain the name of the root of your Basis installation,
/usr/apps/basis for example.

• MANPATHshould contain a component$BASIS ROOT/man.

• Your path should contain a component$BASIS ROOT/bin .

• DISPLAY should contain the name of your X-Windows display, if you will be doing X-
window plotting.

• NCARGROOTshould contain the name of the root directory of your NCAR 4.0.1 or later
distribution, if you have it.

Check with your System Manager for the exact specifications on your local systems.

1.2 Basis Is Both a Program and a Development System

Basis is a system for developing interactive computer programs in Fortran, with some support for
C and C++ as well. Using Basis you can create a program that has a sophisticated programming
language as its user interface so that the user can set, calculate with, and plot, all the major variables
in the program. The program author writes only the scientific part of the program; Basis supplies
an environment in which to exercise that scientific programming, which includes an interactive
language, an interpreter, graphics, terminal logs, error recovery, macros, saving and retrieving
variables, formatted I/O, and on-line documentation.

basis is the name of the program which results from loading the Basis System with no attached
physics. It is a useful program for interactive calculations and graphics. Authors create other
programs by specifying one or more packages of variables and modules to be loaded. A package

1

is specified using a Fortran source and a variable description file in which the user specifies the
common blocks to be used in the Fortran source and the functions or subroutines that are to be
callable from the interactive language parser.

Basis programs aresteerable applications, that is, applications whose behavior can be greatly
modified by their users. Basis also contains optional facilities to help authors do their jobs more
easily. A library of Basis packages is available that can be added to a program in a few seconds.
The programmable nature of the application simplifies testing and debugging.

The Basis Language includes variable and function declarations, graphics, several looping and
conditional control structures, array syntax, operators for multiplication, dot product, transpose,
array or character concatenation, and a stream I/O facility. Data types include real, double, integer,
complex, logical, character, chameleon, and structure. There are more than 100 built-in functions,
including all the Fortran intrinsics.

Basis’ interaction with compiled routines is particularly powerful. When calling a compiled routine
from the interactive language, Basis verifies the number of arguments and coerces the types of the
actual arguments to match those expected by the function. A compiled function can also call a
user-defined function passing arguments through common.

1.3 About This Manual

The Basis manual is presented in several parts:

I. Running a Basis Program, A Tutorial

II. Basis Language Reference

III. EZN User Manual: The Basis Graphics Package

IV. The EZD Interface

V. Writing Basis Programs: A Manual For Program Authors

VI. The Basis Package Library

VII. MPPL Reference Manual

The first three parts form a basic document set for a user of programs written with Basis. The
remainder form a document set for an author of such programs.

Basis is available on most Unix and Unix-variant platforms. It is not available for Windows or
Macintosh operating systems.

A great many people have helped create Basis and its documentation. The original author was
Paul Dubois. Other major contributors, in alphabetical order, have been Robyn Allsman, Kelly
Barrett, Cathleen Benedetti, Stewart Brown, Lee Busby, Yu-Hsing Chiu, Jim Crotinger, Barbara
Dubois, Fred Fritsch, David Kershaw, Bruce Langdon, Zane Motteler, Jeff Painter, David Sinck,

2 Chapter 1. The Basis System

Allan Springer, Bert Still, Janet Takemoto, Lee Taylor, Susan Taylor, Peter Willmann, and Sharon
Wilson. The authors of this manual stand as representative of their efforts and those of a much
larger number of additional contributors.

Send any comments about these documents to ”basis-devel@lists.llnl.gov” on the Internet.

1.3. About This Manual 3

4

CHAPTER

TWO

MPPL Reference Manual

2.1 A More Productive Programming Language

2.1.1 MPPL is a Fortran Preprocessor

MPPL (“More Productive Programming Language”) allows programmers to write in a language
that is more convenient and powerful than Fortran 77. MPPL then transforms statements written
in the MPPL language into standard Fortran 77. This language is essentially an extension to For-
tran 77 that provides free-form input and many structured constructs such as “while” and “for”
loops. MPPL’s macro preprocessor and file-inclusion facility encourage the creation of structured,
easy-to-read programs that contain fewer labels. MPPL provides a more productive programming
environment for Fortran 77 users on the Unix, Linux, AIX, IRIX, Solairs, HP-UX, Tru64 operating
systems.

MPPL can be used independently as well as with Basis.

2.1.2 MPPL’s Three Stages

During execution of MPPL, data flows through three ordered steps, or levels. The first level is
the token processor; it reads the user’s source code and divides it into “tokens”, such as names,
quoted strings, and punctuation marks. The second level is a macro preprocessor; it takes alphanu-
meric tokens that the user has defined as macros and replaces them with appropriate text. The third
level is the statement processor; it reads tokens after they have been processed by the macro pro-
cessor. Then the statement processor forms Fortran 77 output text, translating some higher-level
programming constructs as it does so.

For most applications, a detailed understanding of the operation of MPPL is not required. The
MPPL language is nearly upward-compatible with Fortran 77. The higher-level programming

5

constructs may be added to existing programs, or not, as the user chooses. MPPL does allow
complicated macro definitions, but the basic usage is very simple:

define macroname expansion

causes subsequent appearances of the symbolmacroname to be replaced by the rest of the line
on which the define statement occurs.

The user can supply macro arguments like a function call, with the arguments in parenthesis and
delimited by commas. The arguments are inserted into the expansion of the macro wherever the
definition has a dollar sign followed by an argument number. Thus, an input of

define Pop $1 = $1 - $2
Pop(k,n)

yields the statement

k = k - n

The macro processing facilities are similar to the Unix macro processor m4. The higher-level
language facilities are inspired by the C language and the Unix utility Ratfor.

2.1.3 Read the Sample Programs First

Most users will find it suffices to read the next section to learn how to execute MPPL, and then
read the MPPL program examples in section2.7, referring as necessary to the syntax summaries
in the Appendix. A more thorough understanding of the MPPL program can be postponed to the
day when MPPL does something unexpected.

2.2 Execution

2.2.1 Availability

MPPL is available as/usr/apps/basis/bin/mppl at the Secure Computing Facility, the
Open Computing Facility, and the A division networks. See http://basis.llnl.gov

6 Chapter 2. MPPL Reference Manual

2.2.2 Specifying Input and Output Files

To execute MPPL, the user specifies the files to be processed:

mppl file1 file2 ... filen

The names of the files that MPPL is to translate are delimited by spaces. Output is written to
standard out.

A typical mppl-compile-load sequence is:

mppl mymacros mysource.m > myout.f
f77 myout.f -o xec

If MPPL is executed without a list of files it reads from standard input allowing it to be used as a
filter.

Many mistakes in syntax will be caught by MPPL, such as missing"endif" statements, but
compilation mistakes are possible since MPPL does not check all Fortran syntax.

2.2.3 Specifying Options

Options are entered first on the command line. Options and filenames may not be interspersed. If
no files are given, or if a ‘’ alone is given, MPPL reads from stdin. All output is written to stdout,
and error output to stderr.

- N WhereN is a 1-5 digit integer, specifies the beginning value for MPPL-generated statement
labels. The value should be chosen to prevent duplication of existing labels in your code.
MPPL restarts the sequence in each subroutine. The default value ofN is 23000.

-b Turn off the output of blank lines and comments. The default is to pass blank and comment
lines to the output.

-c string Set the column 1 comment character to be any of the characters instring (up to three
characters may be specified). The default value of this option iscC* .

-C compiler Specify the compiler to be used on the MPPL output. This sets the macroCOMPILER
to have the valuecompiler.

-d Convert literal character constants enclosed with quotation (") characters to Fortran 77 stan-
dard constants using the apostrophe character (’) for quoting.

-D name[= def] Define the macronameto have the valuedef, as if MPPL had read the statement

define name def

2.2. Execution 7

This option may be repeated. Careful quoting is required to embed blanks intodef:

-Dname="’this is a string’"

is typical.

-f Set free-form input. This disables the usual column 1 comment convention and the column
6 continuation convention. MPPL# comments may still be used in any column. If you
only want to disable the column 6 continuation convention, specify a-ccC* (or similar-c
option) after the-f option.

-i N Set theIntegerSize to N. Legal values are 2, 4, or 8, and imply that anintegervariable
without kind-selector, or literal integer constant will be stored in at least 2, 4, or 8 bytes,
respectively.

-I directory Insertdirectory into the search path for include files. Usage is similar to the UNIX
C preprocessor. For instance, the options

-I.. -I/usr/local/vbasis/pkg

tells MPPL to search the parent directory and/usr/local/vbasis/pkg for include
files, in addition to the current directory. The current directory is always searched first.

-l (ell, for “long”) Set the length limit for output lines to 80 instead of the standard 72 columns.
This limit does not apply to comment lines.

-m Prevent MPPL from activating the Basis definitions. Non-Basis users of MPPL should use this
option if problems develop from the Basis definitions.

-Mmachine Specify the machine we intend to compile on. This sets the value of the macro
MACHINEto machine, and may affect the definition of other predefined macros.

-r N Set theRealSize to N. Legal values are 4, 8, or 16, implying that areal variable with
no kind-selectoror literal floating point constant of the form0.0e0 will be stored in an
element of at least 4, 8, or 16 bytes, respectively.

-t Sys Set the intrinsic macroSYSTEMto Sys, and set the value of other intrinsic macros to
the default values for the system named. This allows you to “cross-compile” source for a
Fortran compiler on another system. This option sets the macrosMACHINE, COMPILER,
TYPE, CHARPERWORD, LOCSPERWORD, andWORDSIZEto the defaults for the target
system. Use the-C , -D , or -M options to over-ride these defaults as required.

-u Provide “case insensitivity” for macro names. Either all upper or all lower case (not a mixture)
may be used to invoke a macro. This option is required if Fortran keywords in your source
code are in upper case.

-v Turn on verbose output. Note each input file as it is processed.

8 Chapter 2. MPPL Reference Manual

-w Turn on extra warning messages. In particular, warn ifSizerequests cannot be satisfied in the
given target compiler. E.g., if the compiler has no 16 byte wide floating point type, then
a request for aSize16real object will be mapped intoSize8, and, if the flag was given, a
warning message will be printed tostderr.

--langf77 Convert mppl language macros into Fortran 77. (default)

--langf90 Convert mppl language macros into Fortran 90. The output will be free source form.

--isf90 The source is already f90 free form. This will expect f90 style continuations.

--nolang Do not convert mppl language macros.

--nonumeric do not convert numbers from f90 format (1.0Size8), do not process-r8 or -r4
macros (1.0e00 will not be converted to1.0d00) and do not read mppl.std which define
integer, real and other related macros.

--macro Expand macros. This is the default behavior.

--nomacro Do not expand macros.

--pretty Pretty print i.e. indent lines. Each level of indention uses the
continuation-indention value. This is the default.

--nopretty use existing white space.

--relationalf77 convert conditions to use f77 relations operators (.eq., .ne., ...) This is the
default behavior.

--relationalf90 convert conditions to use f90 relations operators (==, /=, ...)

--honour-new-lines --honor-new-lines -hnl preserves existing line breaks with
--pretty option.

--continuation-indention n -ci n The width to indent blocks and continued lines. De-
faults to 3.

--comment-indentation n -comi The column to start embedded comments (comments
using the # character). This is only valid with--langf90

The -m option, which must occur before the name of the first input file, prevents MPPL from
activating the Basis definitions. Non-Basis users of MPPL should use this option if they find any
problems develop from this change. Chances are pretty good that this is not really necessary, since
if one of your own definitions collides with the built-in one it will replace it. To see the Basis
definitions, run MPPL interactively and enter Dumpdef. Each pair of lines printed are a keyword
and its definition. The keywords are:

2.2. Execution 9

CHAR_PER_WORD COMPILER DEFAULT DONE DYNAM Dumpdef Dynamic ERR FALSE
Filedes Filename GENERATE LOCS_PER_WORD MACHINE Module NO NOTSET
Number_of_Database_Words OK Pi Point Prolog
Quote SITE SLEEPING STDERR STDIN STDOUT SYSTEM TRUE TYPE
UP Use VARNAME WORDSIZE YES
_integer _real _complex _logical _character Ch _Ch _double _Filename
_Filedes _Varname
SS_WIDTH SS_N SS_TC SS_PTR SS_NAML SS_NS SS_N1 SS_M1 SS_I1

2.3 Token Processing

The first internal operation that MPPL performs is the collection of data units, or “tokens”. Tokens,
or strings of characters, are collected one a time. Some are passed directly to MPPL’s output or
“translation”, and some are checked to see if they require expansion.

2.3.1 Token Descriptions

Alphanumeric An alphanumeric token is any sequence of letters and digits that begins with a
letter. The underscore character (_) is treated as a letter.

Digits Tokens can be any one or more digits, 0–9.

Real Numbers Tokens can be Digits followed by a decimal point and exponent.

White Space Tokens can be any sequence of blanks and/or tabs.

Quoted String Tokens can be made up of Hollerith constants or Fortran strings in either single
(’) or double quotes ("). The same type of quote mark can be used inside a quoted string if
the marks are doubled. Or the opposite type of quote may appear.

Comment Everything between a pound sign (#) or an exclamation point (!) and the end of the
physical line is a comment. MPPL changes the first character to a lowercase c and writes
the token to the output IMMEDIATELY. A new token is then collected. This means that a
special method must be used to include comment lines in macro definitions. Refer to the
description of the Immediate macro in “Macro Processing” below.

Logical Operators .eq. .

Multiple Character Operators exponentiation (**) and concatentation (//).

Any Other Single Character For example, a decimal point is a token. Note, however, that
MPPL ignores (and discards) the backslash (\) and collects another token. If the last non-
whitespace token on a line is a backslash, MPPL continues the line. The backslash is useful

10 Chapter 2. MPPL Reference Manual

for separating units that must be interpreted separately, but which the user wants adjacent in
the output.

“Newline” The invisible “return” character at the physical end of a line of input text is recognized
as a token we call “newline”. In two cases, however, MPPL discards newline so that two
or more physical lines can become one logical line: the column-6 continuation (the Fortran
continuation convention) and assumed continuation.

In the Fortran continuation, the newline token and the first six characters of the next line are
discarded if the next physical line begins with five blanks followed by a non-blank character.

Assumed continuation occurs when the last non-whitespace token on a line is
+, -, *, (, comma, &, |, ˜, >, < , = or \ . The user may conveniently
continue a long quoted string by adding a backslash to a concatenate operator (//), for example:

x = "This is a long string"//\
"divided into two parts"

Note that MPPL does not treat the forward slash (division) character as an obvious continuation
because the forward slash is the final character in DATA statements.

2.3.2 Processing Traditional Comments

MPPL recognizesc, C, or * in column 1 of a physical input line as a standard comment line,
and writes the entire line immediately to the compiler-ready output. The list of characters that
signal comment lines may be altered by means of the-c (“minus c”) option described above in
“Specifying Options.”

2.3.3 Free-Form Input

MPPL ignores positioning of statements on a line except for the column-6 continuation convention
and thec, C, or * in column 1, the comment-line indicator.

2.4 Macro Processing

2.4.1 Basic Features of the Macro Processor

The second internal operation that MPPL performs is to replace the alphanumeric tokens the user
has defined as macros with the appropriate text. The macro preprocessor collects any macro argu-
ments, performs macro expansion and translation, generates labels, and then passes translated text
to the statement processor.

2.4. Macro Processing 11

MPPL macros have the following features:

• Recursivity (a macro can call itself).

• Easy-to-read, functional syntax resembles Fortran.

• Built-in conditional statement.

The built-in macros MPPL has are:

define(name,translation)
define name translation
Undefine([name])
ifdef([a],b,c)
ifelse(a,b,c,d)
Errprint(message)
Infoprint(message)
Dumpdef([macroname])
Immediate(argument)
Evaluate(argument)
Remark(message)
Setsuppress(name,char)
include filename
Module
Prolog
SYSTEM

The MPPL define macro lets users define their own macros. Macros have many uses; they can:

• Give symbolic names to constants, so global changes need be made in only one place.

• Conditionally compile blocks of code.

• Abbreviate or customize the language of frequently used blocks of coding where a subroutine
call is not desired.

• Improve readability of the code to make its structure and purpose more obvious.

2.4.2 Macro Names

A macro name can be a string of alphanumeric characters (upper case and lower case letters, digits,
and the underscore character) of any length. Note that the macro processor is sensitive to case. N
and n are recognized as different names. The-u command line option can override this behavior.

12 Chapter 2. MPPL Reference Manual

2.4.3 Argument Collection

If a macro has arguments, the macro name is followed by a left parenthesis. Arguments are
separated by commas and the argument or argument list is terminated with a right parenthesis.
Commas within the second or deeper levels of parentheses, or inside square brackets, are ig-
nored. Each argument in turn is collected, and each alphanumeric token is scanned to see if it
is a macro. In the following example, the define macro has just two arguments,"Jack" and
"Jill(went,up,hill)" :

define(Jack,Jill(went,up,hill))

If a macro name has been specified in aSetsuppress macro, then argument collection is su-
pressed.

2.4.4 Macro Expansion

Because macro names are alphanumeric tokens (as defined above), every alphanumeric token must
be checked. If a token is a macro name, its arguments (if any) are collected, and the expansion of
the macro is “pushed back” onto the input file to be rescanned for tokens as described earlier in
“Token Processing.”

Square brackets are most often used around the arguments to macros. Macro expansion can be
delayed by placing the macro name in one or more pairs of square brackets. Each time brackets
are encountered, the outside pair is stripped off. For example:

define N 100
[N] = N

translates to

N = 100

In a second example, in line 2 below, the N is expanded to 12 when arguments are collected, so the
first argument does equal the second. In line 3, the first argument is N, and the second argument is
12.

define(N,12)
ifelse(N,12,true,false) = true
ifelse([N],12,true,false) = false

2.4. Macro Processing 13

2.4.5 Macro Translation

When a macro is invoked in the code, it is translated using information from the macro definition.
The following substitutions are made:

• Argument substitution ($n).

• Replacement of$* .

• Replacement of$-

• Label generation (@n).

Argument Substitution

Any dollar sign followed by a digit 1–9 in the argument list in the define statement is replaced by
the corresponding macro argument:$1 is the first argument,$2 the second, etc.$0 is the name
of the macro being expanded.

A dollar sign followed by an asterisk or a minus sign, is treated as explained below. A dollar sign
followed by another dollar sign results in the insertion of a single dollar sign into the expansion
text. A dollar sign followed by any other character results in the insertion of that other character
into the expansion text.

define distance sqrt(($1-$3)**2 + ($2-$4)**2)
w = distance(x1,y1,x2,y2)

expands to

w = sqrt((x1-x2)**2 + (y1-y2)**2)

Replacement of $*

The complete argument list, separated by commas, is generated. Thus, if we define Jill as

define Jill hill($*) - $1

then the macro statement in the code

Jill(up,down)

is translated as

hill(up,down) - up

14 Chapter 2. MPPL Reference Manual

Replacement of $-

The argument list minus the first argument is generated. This can be used to define macros with an
arbitrary number of arguments that process the first argument and then call themselves recursively
to process the remaining arguments. For example:

define Product $1 REST($-)
define REST ifelse($1,,,[* $1 REST($-)])
w = Product(x,y,z)
q = Product(x)

which expands to

w = x * y * z
q = x

The ifelse macro is explained below; the result is simply to terminate the recursion when there
are no more arguments left. This is a hard example, but we present it because of the usefulness of
the idea.

Label Generation

The combination of an at sign (@) followed by a digit 1–9 is replaced by an automatically generated
label number. Each occurrence of @n is replaced by the same number within a particular expansion
of the macro. The first number assigned is the next number in the automatic label sequence, as
described in “Execution: Selecting Options.”

In the following example, square brackets protect the second argument of the define macro from
token interpretation as it is collected. The expansion of the macro namedErrorif0 is given
below. It is good practice to use the brackets. They usually produce the desired results, but in this
case, they are not really necessary.

define(Errorif0,[
if ($1.ne.0) go to @1
write(6,@2)

@2 format("$1 is zero.")
return

@1 continue
])
Errorif0(x)

expands to :

2.4. Macro Processing 15

if (x.ne.0) go to 23000
write(6,23001)

23001 format("x is zero")
return

23000 continue

When a macro is expanded, quoted strings do not protect any arguments (e.g.,$1, $2) inside
them. But when a quoted string is seen by the token processor, macro names inside will not be
recognized by the macro processor.

2.4.6 User-Defined Macros

Users define a macro with the built-in MPPL macro define. The two forms of the define macro are:

define macroname expansion
define(name,expansion)

In the first form, the next token after the define is taken as the macro name. After skipping over
any space following the name, MPPL takes the rest of the line as the expansion. Neither the name
nor the expansion is scanned for further macros to expand.

In the second form, a define macro with arguments looks like a Fortran function call. The argu-
ments are in parenthesis separated by commas. This form is treated like a normal macro invocation;
the arguments are scanned as they are read. If name is already defined then to redefine it using the
second form one must surround name with square brackets so that it is not expanded as it is read.

If name has already been defined, the old definition is forgotten. A macro name can be forgotten
altogether with theUndefine macro.

Undefine([name])

The Undefine macro deletes the definition of a macro name. Note the required square brackets to
prevent the name from expanding before we get a chance to Undefine it!

2.4.7 Built-in Macros

In addition to the define macro, the other predefined macros in MPPL are ifdef, ifelse, Errprint,
Dumpdef, Immediate, include, COMPILER, SYSTEM, MACHINE, SITE, TYPE, Prolog, Er-
rprint, Infoprint, and Module. The functions they perform cannot be accomplished with user-
defined macros.

16 Chapter 2. MPPL Reference Manual

In addition, the higher-level constructs in MPPL are actually implemented as built-in macros. For
example, there is a macro whose translation is a special nonprintable character that is interpreted
at the statement level.

The built-in macros are described below.

ifdef Macro

ifdef([a],b,c)

is replaced by eitherb or c , depending on whethera was defined or not. It becomesb if a is a
defined macro name, and expands toc if a was not a defined macro name (providedc is given).
The namea needs to be protected with square brackets. For example,

ifdef([DEBUG],call trace("x",x))

ifelse Macro

If the first argument is identical to the second, theifelse macro,

ifelse(a,b,c,d)

is replaced by the third argument. Otherwise, it expands to the fourth argument. The
second argumentb can be of the formb1|b2 in which case, the equality is satisfied if
a is identical to b1 or b2 . Using the notation above,ifelse(a,b,c,d) is read as
"if a = b, then c else d." In making the comparison, leading and trailing spaces ina
andb are ignored. An example of this macro is

define Dim real $1[]ifelse($2,,,($2))
Dim(x)
Dim(y,100)

which expands to

real x
real y(100)

The pair of square brackets in the definition of Dim is used as a token separator, so thatifelse
will be recognized after the name is substituted for$1 .

2.4. Macro Processing 17

Errprint Macro

The Errprint macro immediately writes the argument to the user’s terminal in the form
MPPL:message and a bell rings. This message goes to the terminal, not to the output file. The
syntax is

Errprint(message)

Infoprint Macro

The Infoprint macro immediately writes the argument to the user’s terminal in the form
MPPL:message and a bell rings. This message goes to the terminal, not to the output file. The
syntax is

Infoprint(message)

Dumpdef([macroname])

If Dumpdef has no arguments, all macro definitions are displayed to the terminal. If there are
arguments, the definition of each macro name given is written to the terminal. The macro name
needs to be protected from expansion during argument collection by square brackets, as shown.

Immediate(argument)

Because the token processor writes comments out immediately, the Immediate macro is the best
way to delay writing a comment line until it is wanted. For example,

define A_comment Immediate([c this is a comment])

is written out as

c this is a comment

when the translation forA_comment is rescanned. The argument of the Immediate macro is im-
mediately written directly to the output file as a separate line without further interpretation. Note
the square brackets surrounding the text of the aboveImmediate . They are recommended in or-
der to suppress the expansion of any macro name, or MPPL reserved word, that might inadvertently
been included in the comment.

Comments beginning with “* ”, “ #”, and “!” are discarded from macro text upon expansion.

18 Chapter 2. MPPL Reference Manual

Remark(argument)

The remark macro is used to insert a comment into the code. A limitation of usingImmediate
to insert comment occurs when switching from generating f77 fixed-form to generating f90 free-
form. Remark will use the correct comment convention based on the--langf77 andlangf90
command line options.

For example,

define A_comment Remark([this is a comment])

is written out as

c this is a comment

when using the--langf77 option; and,

! this is a comment

when using the--langf90 option.

Evaluate(argument)

Evaluate calculates the value of the integer expression represented by argument and returns the
character form of the result. If argument is not an integer expression then Evaluate returns argu-
ment itself. Example:

define N 22
define(NP1, Evaluate(N+1))
define(NP1S, Evaluate(N + 1.0))
x = NP1
y = NP1S

expands to

x = 23
y = 22 + 1.0

Note that in the expression fory , Evaluate(N+1.0) resulted in a call to Evaluate with argu-
ment"22 + 1.0" (since the argument was scanned for macros as it was collected), and since
this was not an integer expression, Evaluate returned it verbatim.

2.4. Macro Processing 19

include filename

The include macro inserts the contents of filename into the input stream. The statement causes the
named file to be read before continuing to read the current input file. The included file may itself
contain other include statements, to a depth of five files.

Setsuppress(name,char)

Setsuppress is used to suppress argument collection for a macro when it is followed by a specific
character.

define RealSize Size4
define(real,\
[ifelse(RealSize,Size4,[[real]([$*])],[[dble]([$*])])]\
)

real(b)
real*8 foo
Setsuppress([real],[*])
real*8 foo

expands to

real(b)
real()*8 foo

real*8 foo

The Setsuppress macro prevents thereal macro from being expanded when used in the
real*8 context.

CHAR PER WORD

CHAR PERWORD evaluates to the number of characters per machine word. Present machines
have either 4 or 8 characters per word.

COMPILER

COMPILER evaluates to the name of the Fortran compiler we are planning to use.

20 Chapter 2. MPPL Reference Manual

LOCS PER WORD

LOCS PERWORD evaluates to the number of locations per machine word. Present machines
have either 4 or 1 locations per word.

MACHINE

MACHINE evaluates to the name of the machine we are planning to use.

Module

Module evaluates to the name of the current subroutine, function or program module. It evaluates
to ? if between modules or if in a main program which does not contain a program statement.

Prolog

After each subroutine, function, or program statement, MPPL adds a line containing the statement
Prolog. Prolog is predefined to be simply a comment. The user may redefine Prolog in order to
include certain statements in every subroutine and function, such as:

define Prolog implicit integer(a-z)

SYSTEM

SYSTEM evaluates to the name of the operating system on which MPPL is being run. Currently
available systems include AXP,LINUX,LINUXA,HP700,SGI,IRIX64,SOL

WORDSIZE

WORDSIZE evaluates to the length of a word in bits. Currently available wordsizes are 32 and 64.

2.4.8 Error Messages

2.4. Macro Processing 21

MPPL error messages are written both to the terminal and to the output file. Where possible,
MPPL tries to continue processing after an error (e.g., anendif statement with no matchingif
statement). MPPL tries to begin again at the next physical line. As is common in such cases, one
error may cause several error messages because the first error confuses MPPL.

Errors in the macro processor are often extremely difficult to handle, and many of these errors
cause MPPL to halt immediately. Since the higher-level constructs are macros, mistakes involving
their keywords can lead to errors that are reported as errors in the macro processor. For example, a
missing right parenthesis in areturn statement

return(value

leads eventually to an error as MPPL proceeds to eat up text looking for the end to the argument
list for return. MPPL tries to help in this case by informing you that it was collecting arguments
when the error occurred, and naming the macros involved.

2.5 Statement Processing

In statement processing, the third internal process, MPPL collects Fortran statements and writes
them to MPPL’s output file in standard form. During this operation, MPPL indents do loops and
if-then statements, and continues long lines using the column-6 convention.

Another major part of statement processing is the transformation of the nonstandard constructions
listed below into standard Fortran:

Looping Constructs

do ; ... ; enddo
do ; ... ; until (condition)
while ; ... ; endwhile
for(initial, condition, reinitial); ... ; endfor
break (or break n)
next (or next n)

Module Declarations and Function Value Return

subroutine, program or function
return
return(value)
end

Conditional and Case Statements

22 Chapter 2. MPPL Reference Manual

if(condition) then;...; else ; ... ; endif
if(condition) return(value)
select(expression) case default endselect
symbols for logical operators: >, <, >=, <=, <> or ˜=, = or ==

Free-Form Input

; is a logical newline
and ! begin comments
Automatic continuation if line ends in +, -, *, comma,

(, &, |, ˜ ,=,>,<

These extensions to the Fortran language allow the user to write programs with clearer structure
and meaning, and to reduce the use of goto statements and labels.

The keywords listed above are macro names that are translated to special nonprintable characters
recognized by the statement processor. When using these macro names, it is important to be aware
of the considerations discussed below.

2.5.1 Cautions on the Use of Keywords

No Spaces in Macro Names

Do not include spaces within the names. Like all macro names, they cannot be separated internally.
The statement

d o 100 i = 1,n

is not recognized as a do statement in MPPL, even though standard fixed-form Fortran allows the
space. The user may separateend do , end while , end for , end if , andend select ,
however.

Error If Name Out of Context

These macro names cannot be used in other contexts (e.g., a variable named do is incorrect). If
misplaced in the input, these macro names cause an error message, usually “Unprintable character
or misplaced keyword in output.”

2.5. Statement Processing 23

How the Statement Processor Sees Keywords

An expression in parentheses that follows one of these macro keywords is macroexpanded during
argument collection, and is rescanned in cases where the argument is supplied. For instance,
the built-in definition ofif is not just a special nonprintable characterX, but rather isX($1) .
Understanding the way the keywords are seen internally is important, as the next example shows.
Given

define n x
define x 10

then

if ([n]>9) goto 70

translates to

if(10.gt.9) goto 70

but

if([[n]]>9) goto 70

translates to

if(n.gt.9) goto 70

Protected Token Interpretation

The user should protect keywords with square brackets inside macro definitions to prevent early
interpretation. For example,

define(zero_out,do i=1,n;$1(i)=0.;enddo)
zero_out(x)
zero_out(y)

will result in two do loops with the same label. Instead, to obtain the correct result, write the
definition as

define(zero_out,[do i=1,n;$1(i)=0;enddo])

24 Chapter 2. MPPL Reference Manual

2.5.2 Symbols for Logical Operators

In the if , for , while , anduntil statements you can use symbols for the standard logical
operators (e.g.,< for .lt., > for .gt.). The complete list of acceptable symbol substitutions is
given below in “Conditional Statements.”

2.5.3 Multiple Statements on a Line

MPPL treats a semicolon (;) as a logical newline only. Note that column-1 conventions only refer
to physical lines. Thus, in this example, ac that follows a semicolon is not the start of a comment.
Also, as shown here, a label is allowed in the middle of a line:

x=0;c=0;100 format(i5)

Of course, just because you can do something doesn’t mean you should.

2.6 Looping Constructs

2.6.1 Do Loops

do i=1,n;...;enddo

Thedo-enddo construct is available in addition to the traditionaldo loop of the form

do 100 i = 1,n
100 continue

The user omits do-loop labels (100 in the example above) and MPPL supplies them during creation
of compiler-ready output. The user may specify the lowest number with which MPPL begins
numbering (the default is 23000; see “Execution Options”). The syntax is

do i=1,n
. . .
enddo

The numbering sequence restarts at the beginning of each module.

2.6. Looping Constructs 25

do/enddo

MPPL allows ado/enddo loop without a variable, which is a “do forever” construct with the
form

do
. . .
enddo

In this construct, MPPL generates a labeled continue statement on thedo line, and replacesenddo
with a go to statement transferring back to that label. The user must provide an exit within this
loop by means of ago to statement, areturn statement, or abreak statement. The last three
statements are explained later in this section.

do/until

The user may also select thedo/until construct, which causes the loop to repeat until the con-
dition given is true:

do
.
.
.
until(condition)

Note that the body of this loop is always executed at least once.

2.6.2 While Loops

A while loop allows the user to repeatedly execute a block of statements while the condition
remains true (e.g., while an error is too large, or a desired element has not been found in a table).
This statement replaces the traditionaldo loop with anif -test/goto inside it. The condition is
tested at the top of the loop:

while(condition)
. . .

endwhile

26 Chapter 2. MPPL Reference Manual

For Loops

The for loop (modified from the for loop in the C language) is a versatile construct that handles
many problems not suited to processing by ordinary looping constructs. It is useful for loops in
which the changing element is not merely incremented, but rather may be a call to a function,
multiple statements, or another nonlinear process. Note the use of commas instead of the semi-
colons used in C. The second argument, the condition, must always be given. The third argument
is optional.

for(initial,condition,reinitial)
. . .
endfor

MPPL translates the construct as shown below. First, the initial clause is executed, and then the
condition evaluated. If the condition is true, the body of the loop is executed. Then the reinitial
clause is executed, and the condition reevaluated. The loop terminates when the condition becomes
false.

initial
go to L3

L2 reinitial
L3 if(.not.(condition))go to L1

. . .
go to L2

L1 continue

The first and third arguments may contain multiple statements, and the first argument can be null,
for example,

for(,n<10,n=n+1)
i = i + n

endfor

2.6.3 Leaving and Skipping

break

The MPPLbreak statement can be used inside any of the looping constructs discussed above. It
is invoked in any one of three forms:

break
break(n)
break n

2.6. Looping Constructs 27

wheren is an integer that specifies the number of loops from which a breakout is desired. The
break statement translates to ago to L statement, whereL is the supplied label of a continue
statement that follows the end of the loop. Ifn > 1, the transfer is to the end of the n’th enclosing
loop, e.g.,

do i = 1,10
do j = 1,10

if(x(i,j).eq.0)break 2
enddo

enddo

Here, thebreak 2 statement causes a transfer out of both loops. If the 2 is omitted, transfer
would be just out of the j loop.

next

The next statement can also be used inside any of the looping constructs. It causes the next
iteration of the loop to begin.

The slight differences in implementation for each kind of loop are shown below:

Type of Loop Go to:
Traditional do loop labeled statement
Label-less do loop enddo
do/enddo, do/until do
while/endwhile while
for/endfor reinitial

Note that, in each case, the transfer is to the top of the loop. However, the labeled loops go to the
label to increment the variable. In traditional loops, where the labeled statement is not continue,
the labeled statement is executed, which may be surprising. Note also that thedo/until loop
executes the loop body at least once after the use of anext statement.

2.6.4 Module/Return Statements

Modules may begin with standardprogram , subroutine , or function statements. These
three words are MPPL macro names so that MPPL can issue good error messages and so that
functions can return a value from a function in a more natural way.

Inside a function, the user may provide an argument to thereturn statement:

28 Chapter 2. MPPL Reference Manual

return(value)

MPPL expands this to

functionname = (value)
return

It is an error to use an argument with thereturn statement inside a program module or subroutine
module. In that case, MPPL displays an error message, but continues execution. A statement of
the following form is allowed:

if(condition) return(value)

2.6.5 Conditional Statements

MPPL supports all the standardif andif-then-elseif-else-endif constructs of Fortran
77. It also adds some extra features to these statements.

Symbol Substitution

In addition to processing Fortran 77 forms of theif statement, MPPL allows the user to enter the
following symbols for equals, greater than, etc., instead of the traditional notation.

User enters translation
> .gt.
>= .ge.
< .lt.
<= .le.
˜= .ne.
<> .ne.
˜ .not.
= .eq.
== .eq.

if(condition) enhancement

MPPL also allows placing the last part of anif (condition) statement on a new line. For example:

2.6. Looping Constructs 29

if (ierr > 0)
call goof

or

if (ierr > 0)
then

call goof
endif

if(condition) return(value) statement

This special single-statement

if (condition) return(value)

appears to be a statement of the form

if (condition) statement

However,return (value) translates to two statements. MPPL handles this in a special way in
order to translate it correctly to:

if(condition) then
functionname=(value)
return

endif

2.6.6 Case Selection Statement

The syntax for the select macro is:

select(expression)
case casenum:
. . .
default:
. . .
endselect

where

30 Chapter 2. MPPL Reference Manual

select(expression)

compares an integer expression to the values listed in the case statements that follow, and executes
at most one of the cases. The firstcase stated must immediately follow the select statement. An
optionaldefault section can be executed if the expression fails to match any of thecase s.

case casenum:

labels the beginning of the statements to execute if the select expression matches the case expres-
sion casenum. For casenum, the user must insert either an integer, a range (two integers separated
by a minus sign), or a comma-delimited list of integers and ranges. The expression must end with
a colon. For example:

case 7-10,12:

Statements may follow on the same line, after the colon. Multiple statements may be separated by
a colon, or appear on new lines.

default:

labels the beginning of the statements to execute if the select expression fails to match any of the
case values.

endselect

marks the end of the case list. Here is an example of a complete select/case/default/endselect
construction:

select(x)
case 0: y = 1

x = 1
case 1-4: y = 2
case 5,6: y = 3
case 7-10,12:

y = 4
default: y = 0;x = 0
endselect

A select statement is translated either into a series ofif statements or into a computed go to.
The latter is more efficient and so is used if there are enough consecutive case values to make it
desirable. A few gaps in the sequence will be filled in and the sequence need not start from one. A
computed go to is a statement of the type

go to (1000,1001,1002, ...) ivar

where control goes to label 1000 if ivar = 1, to label 1001 if ivar = 2, etc. While efficient, such
statements are opaque, annoying to modify, and have undefined behavior if ivar is out of bounds.
The select statement is both clearer and safer.

2.6. Looping Constructs 31

2.7 Sample Input File Showing Major MPPL Features

#LOOPING CONSTRUCTS
#
define N 100
define M 20

function shoot(j)
c This subroutine shows the six different looping constructs

real xx(N),y(M),x,y
there are four kinds of DO loops plus WHILE and FOR loops.
#

TRADITIONAL LABELED DO LOOP
do 100 i=1,10

if(x(i) = 4) then
break # same as go to next stmt after 100

endif
if(x(i) = 5 then

next # same as go to loop label (100)
endif

100 y(2) = x(i) # this gets executed on a next
#

DO LOOPS WITHOUT LABELS
next gets you to next iteration; break gets you out
SIMPLE LOOP
#

do i=1,M
if(y(i) < 0) break
if(y(i) >= 10.) next
y(i) = sqrt(10.-y(i))

enddo
#

NESTED LOOPS
#

do i = 1,M
do j = 1,N

if(x.eq.10)then #next iteration of inner loop
next

endif
if(x.eq.20)then #next iteration of outer loop

32 Chapter 2. MPPL Reference Manual

next(2)
endif
xx(j) = 8
if(y(i) > x(j))then

break # get out of inner loop
else

break(2) # get out of inner loop
endif

enddo j # end inner loop
ignores anything after enddo

enddo i # end outer loop
#

DO FOREVER
repeats forever; get out with break, return, or goto.
#

i=0
do

i = i + 1
if(i > M) break
if(x(i) == 32)

next
x(i)=1/(x(i)-32)

enddo
#

WHILE/ENDWHILE
does a loop as long as the condition is satisfied
#

i = N
while(x(i)-x(i+1) > 1.e-5 & i <> 0) #&=.and. <>=.ne.

i = i - 1
endwhile

#

DO/UNTIL
repeats until the condition is satisfied. Note that unlike
a while loop, the loop body is always done once
#

do
i = i - 1
if(i = 0 | x(i) <= 0.) break # | = .or.

until(x(i)-x(i+1) < 1.e-3)
#

2.7. Sample Input File Showing Major MPPL Features 33

FOR/ENDFOR
has three arguments separated by commas:
a) initialization statements to be executed before the
loop, b) the condition under which the loop is to be
executed while true, and c) the reinitialization
statements to be executed at the start of each loop after
the first before the condition is tested. The condition,
argument 2, must be present; other arguments are optional.
#
The following example is the same as do i=1,N;x(i)=i;enddo
#

for (i-1, i<=N, i=i+1)
x(i) = 1

endfor
#
FOR loops are good for things DO LOOPS can’t do:
the hard way to find the square root of two is:
#

for(t = 1.,abs(t**2 - 2.) > 1.e-6, t=(t+2./t)/2.)
endfor

#

FUNCTIONS
The return statement can have an argument to give the
returned value.
#

return(t)
end
real function boxo(w,z)
real w,z,a,b

#

IF STATEMENTS
There are two basic kinds of IF; this routine shows some
of the variations allowed.
#
IF(CONDITION) THEN ...ENDIF
#

if(a<b) #ok if then is on next line
then

call odd("this is a string; try it");return(b-a)
endif
if(a <> b) then #if a .ne. b

x = y
else if (b > a-1) #ok if you forget the then here

34 Chapter 2. MPPL Reference Manual

x=y/2 + #statements continued if they end
golf(tango, #in +,-,*,comma,=,(,&,|,caret, or
bravo \ #backslash; backslash is deleted
-1)
y="This is a quoted string "" with a quote in it\"

#...but not inside strings
else if("the sky is blue >")then #or put in to be neat

howdy = 1
else

if(a == w) call junko
endif

#

IF(CONDITION)STATEMENT/RETURN(VALUE)
is correct even if it expands to more than one statement.
#

if(a > b)
b = b/2

if(a<> b) return(gas)
return(bug)
end
program testme

#

SELECT/CASE/DEFAULT/ENDSELECT
You can put things after an ENDDO that are ignored.
#

real x(N)
do i=1,10

x(i) = i - 1
enddo i --end of loop setting initial values for x

#
You can have multiple statements by separating them
with semicolons, even in the arguments of a FOR statement.
#

i0 = 0 ; j0 = M
for(i = i0; j = j0 , j < 9 , i=i+1;j=j-1)

x(i) = y(j)
for(k=j, k<i+5 , k=k+1)

z(k) = y(j) + x(i)
endfor

endfor
#

2.7. Sample Input File Showing Major MPPL Features 35

SELECT allows you to test an integer variable against
different cases.
#

select(j)
case 5: y=5 #if j is 5 do these two statements

z = 4 ! exclamation points are also comments
case 6: y=6 ! if j is 6 do this one
case 7,8,10: ! statements can follow on next line

y=8;z=4 ! if j is 7, 8, or 10
case 11-20,9: y=9 #if j is between 11 and 20

#inclusive or is 9
default:

y=0 #do if j is none of the above
endselect

#
call exit
end

2.8 Examples of Advanced MPPL Macro Usage

The following examples show how to use the macro processor. Most MPPL users will use macros
only in the simple sense of using a name as a symbol for a constant value, as in

define pi 3.14159

and as in the first example below, to enable the specification of variables to be confined to just
one place. Another common problem is conditional compilation, which we cover in the second
example. The third and fourth examples show a user inventing language extensions.

2.8.1 Specifying a common block

This example shows how to specify a common block in one place, then use it as needed in sub-
routines. We include an Immediate comment so that in the expanded source the common block is
marked with a comment.

define(Distribution_parameters,[
Immediate([c Distribution variables])

integer alpha,sigma,beta
common /c1/ alpha,sigma,beta

])

36 Chapter 2. MPPL Reference Manual

subroutine x
Distribution_parameters

. . .
end
subroutine y

Distribution_parameters
. . .
end

2.8.2 Conditional compilation

Depending on whether or not the first define(DEBUG,) line is present or not, the write statement
is or is not compiled.

define(DEBUG,)
ifdef([DEBUG],[

write(6,100) x,y,z
])

2.8.3 Vector operations

The following example shows a macro that expands to a do-loop that adds the last two arrays
together and stores the result in the first array. The fourth argument is the length of the arrays. I do
not advocate this kind of programming but it can be done.

define (Vector_add,[do i=1,$4 ; $1(i)=$2(i)+$3(i) ; enddo])
Vector_add(a,b,c,n)
Vector_add(d,e,f,n)

2.8.4 Alphanumeric Labels

Some people enjoy the LRLTRAN feature of using names as labels. This can be done with MPPL
as long as we use a macro to change the names into statement labels. The Label macro is recursive
so that several labels can be specified at once. The definition for Label can be read: if Label is
called with an empty argument list, do nothing. Otherwise, define the first argument ($1) to be
a macro name standing for the next available label (@1) and then apply Label to the rest of the
arguments ($). Thus Label chews its arguments from left to right. Note that the$1 is surrounded
by square brackets in case this name was used as a label already in another subroutine.

define Label ifelse($1,,,[define([$1],@1)Label($-)])

2.8. Examples of Advanced MPPL Macro Usage 37

function boom(x)
c return 1, 0, -1 depending on the sign of x

integer boom
real x

Label(Negative,Positive) #must appear before first use of names
if(x < 0) go to Negative
if(x > 0) go to Positive
return(0)

Positive return(1)
Negative return(-1)

end

Conversion to MPPL

Those users who want to convert a code to precompile with MPPL instead of Precomp, but who
do not plan to utilize the rest of Basis will have to make simple changes in their cliches. If a cliche
is calledAbc change the statementcliche Abc to define{[UseAbc],[and change the
statementendcliche to])\ . In the source everyuse Abc must be replaced byUse(Abc) .
Basis does not supportdif and .if directives. Replace them with combinations of the Basis
macrosifelse anddefine .

2.9 Migration to Fortran 90 syntax

In the years since MPPL was first written, the Fortran standard has advanced to where the language
processing features of MPPL can be replace by Fortran 90 syntax.

2.9.1 Command Line Options

A typical mppl-compile-load sequence is:

mppl mymacros mysource.m > myout.f
f77 myout.f -o xec

Often, the input file mysource.m and the output file myout.f are significantly different. All macros
and real numbers have been processed and the output has been indented to a consistent form.

A line similar to

mppl --langf90 --nomacro --nonumeric --nopretty -l78
mysource.m > mysource1.m

38 Chapter 2. MPPL Reference Manual

can be used to convert only the language macros.

The --nolang command line option can then be used to prevent the future expansion of MPPL
language constructs.

mppl --nolang mymacros mysource1.m > myout.f90
f90 myout.f90 -o xec

2.9.2 Statement Processing

The --langf90 option will produce free-form output. All comments start with an exclamation
point (!). Embeded comments will replace the# with ! without creating a new line. Continued
lines end with an ampersand (&).

By default, f77 compatiable relation operators are used.--relational90 can be used to gen-
erate symbols<, <=, ==, / =, >, and>=

2.9.3 Macros

include filename is process by mppl. filename is read by mppl and processed.
include "filename" is process by f90.filenameis ignored by mppl.

TheRemark macro should be use instead ofImmediate to insert comments from macros. This
will use the correct comment convention.

2.9.4 Loop Constructs

Indexed Loops

do i=1,n
...
enddo

This loop requires no conversion since it is valid f90.

do/until

do
...

until(condition)

do/until requires an explicitexit .

2.9. Migration to Fortran 90 syntax 39

do
...
if (condition) exit

enddo

While Loops

while(condition)
. . .

endwhile

Theendwhile is replaced withenddo .

while(condition)
. . .

enddo

For Loops

for(initial,condition,reinitial)
. . .

endfor

The initial , condition and reintial clauses are moved to the appropriate parts of a
while loop.

initial
do while (condition)

. . .
reinitial

endfor

2.9.5 Leaving and Skipping

next andnext are replace bycycle andexit .

The next 2 , syntax is converted to usegoto ’s as with --langf77 . A motivated user can
manually convert this to:

40 Chapter 2. MPPL Reference Manual

outer: do
do

...
exit outer

enddo
enddo outer

2.9.6 Case Selection Statement

select(expression)
case casenum:
. . .
default:
. . .
endselect

casenum is enclosed in parenthesis.default becomescase default .

select(expression)
case (casenum)
. . .
case default
. . .
endselect

2.9. Migration to Fortran 90 syntax 41

42

INDEX

Symbols
! .10
$.14
[] .13
\ .10

A
availability

MPPL .6

B
Basis

data types. .2
documentation .2
overview .1
parser .2

Basis keyword definitions9
BREAK. .27
built-in

MPPL macros16–21

C
case

MPPL CASE statement30
CHAR PERWORD MPPL macro20
comments

eliminating from MPPL output.7
COMPILER MPPL macro20
continuation

MPPL line .23, 25
MPPL line length option8

conversion
to MPPL .38

D
declarations, universal21
default

case statement clause31
MPPL statement labels7

define MPPL macro .16
DO loops

MPPL. .25
Dumpdef MPPL macro18

E
environment variables1

BASIS ROOT. .1
DISPLAY .1
MANPATH .1
NCARG ROOT .1

error
MPPL .21
printing in MPPL.18

Errprint MPPL macro18
Evaluate MPPL macro19
execute line

MPPL .7
EZN .2

F
FOR loops

MPPL. .27
functions

special MPPL RETURN28

I
IF

MPPL .29

43

IF-RETURN in MPPL29
ifdef MPPL macro .17
ifelse MPPL macro .17
Immediate MPPL macro18
implicit .21
include

file in basisseeREAD
MPPL macro .20

Infoprint MPPL macro.18
Information

printing in MPPL.18

L
LOCS PERWORD MPPL macro21
logical operators

MPPL symbols for25, 29
loops

MPPL constructs25

M
m4 preprocessor .6
MACHINE MPPL macro21
Module MPPL macro.21
MPPL .5–41

availability .6
eliminating blank lines7
execute line .7–10
execution line macros7
free-form input .8
language. .6
macros .6
meaning of .5
options .7
sample programs32

N
NEXT .28

P
Prolog MPPL macro.21
protect

MPPL macro expansion24

R
Ratfor .6

Remark MPPL macro19
RETURN

MPPL. .28

S
SELECT statement

MPPL .30
Setsuppress MPPL macro20
statements

MPPL .22, 25
steerable applications .2
SYSTEM MPPL macro21

U
Undefine MPPL macro16

W
WHILE loops

MPPL. .26
WORDSIZE MPPL macro21

44 Index

	The Basis System
	Environment Variables
	Basis Is Both a Program and a Development System
	About This Manual

	MPPL Reference Manual
	A More Productive Programming Language
	Execution
	Token Processing
	Macro Processing
	Statement Processing
	Looping Constructs
	Sample Input File Showing Major MPPL Features
	Examples of Advanced MPPL Macro Usage
	Migration to Fortran 90 syntax

	Index

